
ABSTRACT: Developing corn hybrids with improved FA pro-
files is important in providing products with enhanced nutritional
characteristics. To support this effort, rapid screening methods
are needed to track the various traits of interest. In using NIR
methods, calibrations are based on an assumed linear relation-
ship between the concentration of the analyte of interest and the
absorbance of the sample. Although this point seems obvious,
this linear relationship does not exist when using GC analysis as
a reference method for oleic acid content in ground corn kernels.
In this case, the GC data provide a relative oleic acid content of
the oil and not of the grain from which the NIR spectrum is mea-
sured. A method of removing this nonlinearity by modeling the
absolute oleic acid content in the grain has been developed. The
relative oleic acid content of the oil is then calculated from this
predicted absolute oleic acid value, and the total oil content of
the grain is predicted from another calibration model. Significant
improvement in the model’s predictive ability is demonstrated
using this two-calibration model.
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NIR reflectance spectroscopy (NIRS) is a well-established
technique for the analysis of quality traits of grain (1–8). NIRS
provides a cost-effective high-throughput method to measure
these traits and provides the additional advantage of being able
to measure multiple characteristics in a single analysis. This
ability to measure multiple constituents simultaneously be-
comes increasingly important, as various quality traits are in-
corporated into a value-added product. 

When developing NIR calibration models, the goal is to
identify changes in the spectral absorption that correlate with
changes in the analyte’s concentration and then to develop a
mathematical relationship using the tools of linear algebra. The
entire premise of calibration development is based on Beer’s
law, which defines a simple linear relationship between the ab-
sorption spectrum and the chemical composition of a sample.
Simply stated, the law claims that when a sample is placed in
the optical path of a spectrometer, there is a direct and linear
relation between the concentration(s) of its constituent(s) and
the amount of energy it absorbs. Mathematically stated: Aλ =
ελbC, where Aλ is the absorbance value of the sample at a spe-

cific wavelength λ, ελ is the absorptivity coefficient of the con-
stituent at that wavelength, b is the optical path length through
the sample, and C is the concentration. Standard calibration
methods such as classical least squares (CLS) and inverse least
squares (ILS), as well as eigenvector methods such as principal
component regression (PCR) and partial least squares (PLS),
are all derived from matrix versions of this equation. 

Beer’s law is based on light absorption in nonscattering
media. Agricultural samples such as ground corn seed are
highly scattering, and this scattering causes some nonlinear be-
havior in the spectral absorbancies. To correct for these nonlin-
ear effects, several mathematical preprocessing techniques
have been developed (9–15).

Robust NIR calibrations for grain traits require that the
models be developed from samples that include the genetic di-
versity expected in future samples as well as samples from
multiple locations and growing years (16). In addition, a linear
relationship must exist between the reference chemistry for the
analyte of interest and the spectral contribution of that analyte
to the total spectrum of the sample being analyzed. Although
this point seems obvious, this relationship does not exist when
measuring an oil-quality trait such as the oleic acid content in
corn seed. To clarify the terminology used, the expression “rel-
ative” oleic acid content will refer to the percentage of oleic
acid in the oil and the term “absolute” oleic acid content will
refer to the actual oleic acid content expressed as a percentage
of the total sample (ground corn seed) mass. Because oleic acid
is measured in terms of percentage in the oil and not in the
grain, and the amount of oil in the grain is not constant, a non-
linear relationship exists between the relative oleic acid con-
tent of the oil and the absolute oleic acid content of the grain
from which the NIR spectrum is obtained.

For this study, GC analysis was used to provide the relative
oleic acid reference data. The oleic acid value from this analy-
sis is expressed as a percentage of the total FA that make up the
oil and not the absolute oleic acid content within the sample.
To illustrate this nonlinearity, if a corn sample that has a nor-
mal oil content of 3.5% were analyzed by GC and determined
to have 60% oleic acid, the actual oleic acid content in the grain
would be 2.1% [ = (60% oleic acid in the oil) × (3.5% oil in the
grain)]. If a second sample that was a high-oil pollinator (22%
oil) were analyzed and determined to have 35% oleic acid in
the oil, the actual oleic acid content in the grain would be 7.7%
[ = (35% oleic acid in the oil) × (22% oil in the grain)]. From
these examples it is clear that fluctuations of oil content in the
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grain will cause a nonlinear relation between the GC reference
value and the actual oleic acid content in the grain.

From a spectroscopic point of view, the spectra of the vari-
ous FA found in corn oil are very similar. The major differences
are due to differences in FA chain length and degree of unsatu-
ration. The chain lengths affect the ratio of the CH3 to CH2
stretching modes, whereas the degree of unsaturation affects the
magnitude of the olefinic C–H stretching and bending modes as
well as the magnitude of the C=C stretch. In the NIR region of
the spectrum, absorption is due to overtones and combinations
of these fundamental absorption frequencies. The problem with
developing robust calibrations to measure differences in FA
composition in ground corn is that the spectral changes due to
changes in FA composition will follow Beer’s law with respect
to their absolute concentration within the sample and not their
composition within the oil (relative oleic acid value).

The genes that affect the oleic acid content also affect the
linoleic acid content because both FA are part of the same bio-
chemical pathway. For this reason, there is an inverse relation-
ship between oleic acid and linoleic acid. Since the only differ-
ence between the two FA is one double bond, which is not con-
jugated, one would expect that the major spectral differences
would be in the magnitude of the olefinic absorptions. That is,
as the oleic acid content of the oil goes up, the magnitude of
the olefinic absorption bands goes down. However, all other
things being equal, as the oil content in the grain is increased,
the absolute magnitude of the olefinic absorption bands is also
increased. Conventional modeling can account for this prob-
lem to some degree because as the oil content of the grain is in-
creased, the olefinic-to-aliphatic absorption ratio remains un-
changed. Nevertheless, conventional modeling techniques such
as CLS, ILS, PCR, and PLS are based on linear algebra and
work best when dealing with linear relationships and when
Beer’s law is followed.

EXPERIMENTAL PROCEDURES

Samples and NIR. Corn seed samples used in this study were
collected at various Pioneer research stations in the continental
United States, Hawaii, and Puerto Rico during the 1997–2000
growing seasons. The samples were diverse in terms of genet-
ics, growing environment, oil content, and oleic acid content.
Both transgenic and nontransgenic seeds were included. Nine
hundred eighty-four samples were used to construct the cali-
bration models. Prior to NIR scanning, samples were ground
through a custom high-throughput self-cleaning grinder. Sam-
ple carryover was negligible. NIR spectra of all samples were
obtained on an NIR Systems model 6500 scanning monochro-
mator (NIR Systems Inc., Silver Spring, MD) equipped with a
sample autochanger. Approximately 3 g of ground corn was
placed into a small ring cup (36-mm diameter), and reflectance
spectra (log 1/R) were recorded from 400 to 2500 nm at 2-nm
increments. A total of 16 sample and 8 background scans were
averaged for a total analysis time of 1 min. A validation set
consisting of 863 samples was used to test both the direct and
indirect calibration methods. These samples came from the

same growing locations as the calibration set but were from the
2001 growing season.

Reference chemistry. The oleic acid content of the samples
was determined using GC. Approximately 5 mL of hexane was
added to ~500 mg ground corn seed, and the samples were agi-
tated for 1 min and allowed to sit for 15 min to extract the oil.
The extract was then transferred to autosampler vials, and 100
µL of trimethylsulfonium hydroxide in methanol was added to
effect methylation. Samples (1 µL) were injected using split in-
jection (30:1) onto a 6890 Plus gas chromatograph (Agilent).
FAME were separated on a SUPELCOWAX 10 15 m × 0.25
mm i.d. × 0.25 µm film thickness column and detected using
FID. Percent FA composition (16:0–18:3) was determined
using Turbochrom 6.1 software (PE Nelson, Wellesley, MA).

The oil content of the samples was determined using ether
extraction (17).

Calibration development. NIR calibration models were de-
veloped using Infrasoft International’s (Springfield, MO) NIRS
3 calibration development software version 3.10. For each data
training set (spectra + reference values), 60 calibration models
were developed using various scatter corrections, derivatives,
and smoothing functions. This process of evaluating a multi-
tude of preprocessing algorithms was made possible by a cus-
tom automated program that allows the user to input the data
set and have the software calculate the calibration statistics for
the 60 different models. Although this automated procedure is
useful for evaluating a wide variety of preprocessing algo-
rithms, a calibration developer must thoroughly scrutinize the
calibration data when making decisions such as outlier detec-
tion and factor selection.

In this study, two different methods were developed to pre-
dict the relative oleic acid content in ground corn seed. The di-
rect method used the relative oleic acid reference values (GC
analysis) to build the model directly using a PLS algorithm.
The spectral data preprocessing used to treat the data was a
weighted-multiplicative scatter correction followed by a gap
second derivative using a five-point window and finally a five-
point smoothing function. Fifteen factors were required to
model the relative oleic acid content. 

The second indirect calibration method predicts the relative
oleic acid content by using two independent calibration equa-
tions. The first equation predicts the absolute oleic acid content
in the corn, whereas the second equation predicts the total oil
content of the grain. The relative oleic acid content is then cal-
culated by dividing the absolute oleic acid prediction by the
total oil prediction. The calibration for total oil had been devel-
oped prior to this study and consisted of a data set containing
240 samples. The NIR spectra of these samples were obtained
as described above. The oil contents of these samples were ob-
tained by ether extraction (17). The spectral preprocessing for
this calibration model was standard normal variate and detrend-
ing followed by a gap second derivative using a 10-point win-
dow. The spectral data were then smoothed with a five-point
smoothing function. A total of eight factors were used to model
the total oil content. To develop an equation for absolute oleic
acid content, there must be a means of measuring the absolute
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oleic acid content in the corn seed. Since GC analysis provides
relative oleic acid content, absolute oleic acid content must be
calculated. Absolute oleic acid content was calculated by mul-
tiplying the relative oleic acid content from the GC analysis by
the predicted oil content from the NIR calibration. A calibra-
tion model was then developed using this calculated absolute
oleic acid value. The spectral pretreatment used for this model
was standard normal variate and detrending followed by a gap
second derivative using a five-point window. The spectral data
were then smoothed with a five-point smoothing function. A
total of nine factors were used to model the absolute oleic acid
content. Cross-validation results of these calibration methods
were compared. Both methods were then validated against an
independent validation set.

RESULTS AND DISCUSSION

Figure 1 illustrates the results of the cross validation of the di-
rect method. The “S” shape observed in the plot is typical of
nonlinear systems. It is also clear that there is a considerable
amount of scatter at the high-oleic end of the plot. A slope of
less than 1 indicates that the variability in the Y-block data
(relative oleic acid content) is not fully accounted for in the 
X-block data (spectra).

Figure 2 presents the cross-validation results for the ab-
solute oleic acid equation. Although the SE of cross validation
(SECV), R-squared, and slope have dramatically improved
with this equation, no comparison can be made with the direct
method because the predicted values from this model are in dif-
ferent units. It is important to note that there appears to be no
indication of nonlinear behavior in this model. To make a com-
parison of these two methods, these absolute values need to be
converted to relative oleic acid content. The relative oleic acid
value is calculated by dividing the predicted absolute oleic acid
content by the predicted oil values from the total oil equation.
The data are then plotted against the reference values obtained
from the GC analysis. The results of this calculation are shown
in Figure 3. It is apparent from this plot that the “S” shape,
characteristic of nonlinear systems, has been removed. It is also
clear that both R-squared and slope have significantly improved
as well as the SECV. In addition, the large amount of scattering

at the high-oleic end of the plot has been removed. Although
these results are very encouraging, it is more important to test
this method on an independent validation set. Figure 4 illus-
trates the results of the validation samples predicted using the
direct method. Once again, we can see the characteristic “S”
shape in the plot of the data. The large scatter at the high end
of the oleic acid concentration is also apparent. Figure 5 illus-
trates the results of the validation set predicted by using the in-
direct method. Clearly, there has been an improvement in the
predicted relative oleic acid values using this method. As be-
fore, it is clear that the nonlinearity has been removed, as can
be seen by the absence of the “S” shape in the plot. The overall
scatter at the high end of the oleic acid concentration range also
has been reduced. Overall, there has been an improvement in
all of the calibration statistics including the slope, R-squared,
and the SE of prediction (SEP). 

Although the indirect method improves the predictive accu-
racy of the relative oleic acid content, interesting differences in
the SEP-to-SECV ratio were observed between the two meth-
ods. As a calibration model becomes very robust, it would be
expected that the SEP-to-SECV ratio would approach unity. For
the direct method, this ratio was 1.22, and for the indirect
method this ratio was 1.36. This difference implies that the indi-
rect method is less robust than the direct method. However, the
indirect method relies on two calibrations to calculate its pre-
dictive value. Because the oil calibration was developed before
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FIG. 1. Cross-validation results of the direct calibration method. SECV,
SE of cross validation. Oleic acid values are % oleic acid by weight in
the oil.

FIG. 2. Cross-validation results of the absolute oleic acid model. For
abbreviation see Figure 1. Oleic acid values are % oleic acid by weight
in the seed.

FIG. 3. Cross-validation results of the indirect calibration method. For
abbreviation see Figure 1. Oleic acid values are % oleic acid by weight
in the oil.



this study began, samples contained in that training set were
composed primarily of those that had commodity-type FA pro-
files [approximately 11% palmitic, 25% oleic, and 60% linoleic
acids (18)]. Although the trait of interest (oil) for this calibra-
tion model is composed of several FA, the spectral signature for
oil is fairly constant because the FA composition in these sam-
ples is relatively constant. Thus, the “spectrum” of oil in terms
of the olefinic-to-aliphatic absorption ratio remains unchanged
among the samples in the calibration training set. Because of
this, increased error would be expected when predicting the oil
content of samples that have altered FA profiles. To test this the-
ory, the oil calibration was updated with samples that had modi-
fied FA compositions. The models for oil and absolute oleic acid
were both recalculated. The results of the validation set pre-
dicted by using the updated indirect method are shown in Fig-
ure 6. Including samples with altered FA improved all of the cal-
ibration statistics for the relative oleic acid prediction. The ratio
of SEP to SECV also improved to 1.16. It is important to note
that since the oil and absolute calibration models are mathemat-
ically interrelated, they must be expanded together.

By calculating independent equations that are linear with re-
spect to Beer’s law, the indirect method of calibration removes
the nonlinear relation between the GC reference data and the
spectral absorbancies. This nonlinear relationship is large in
this data set because the oil range covers a full order of magni-
tude (~2.5–25%). It would be expected that this effect would

not be as large for data sets with a more confined range of oil
contents. This method of correcting for oil variation has been
explored in a previous paper by Daun et al. (19).
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acid by weight in the oil.
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